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The evolution of a wavepacket in a laminar boundary layer is studied experimentally,
paying particular attention to the stage just prior to the formation of a turbulent
spot. The initial stages of development are found to be in very good agreement with
previous results and indicate a stage in which the disturbance grows according to
linear theory followed by a weakly nonlinear stage in which the subharmonic grows,
apparently through a parametric resonance mechanism. In a third stage, strong non-
linear interactions are observed in which the disturbance develops a streaky structure
and the corresponding wavenumber–frequency spectra exhibit an organized cascade
mechanism in which spectral peaks appear with increasing spanwise wavenumber
and with frequencies which alternate between zero and the subharmonic frequency.
Higher harmonics are also observed, although with lower amplitude than the low-
frequency peaks. The final (breakdown) stage is characterized by the appearance of
high-frequency oscillations with random phase, located at low-speed ‘spike’ regions
of the primary disturbance. Wavelet transforms are used to analyse the structure of
both coherent and random small-scale structure of the disturbance. In particular, the
breakdown oscillations are also observed to have a wavepacket character riding on
the large-amplitude primary disturbance.

1. Introduction
The evolution of a wavepacket in a laminar boundary layer has often been pro-

posed as an idealized model for natural, or unforced, transition to turbulence since
it represents the impulse response of the boundary layer and thus includes the inter-
actions between all frequencies and spanwise wavenumbers. The work of Gaster &
Grant (1975) was one of the first detailed experiments to document the structure of
the wavepacket as it evolved. By placing a hot-wire probe just outside the boundary
layer (at the secondary maximum of the linear eigenfunction for u, the streamwise
disturbance velocity) they were able to follow the growth of the disturbance with
increasing downstream distance. Their measurements compared very well with results
computed from the theoretical model of Gaster (1975) which treated the wavepacket
as a summation over all spanwise wavenumbers and frequencies of least-damped
linear stability eigenmodes. By computing the amplitude of each mode as it travelled
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downstream, Gaster (1975) was able to reproduce both the growth and structure of
the measured wavepacket during its low-amplitude phase of growth.

At their last measuring station, Gaster & Grant (1975) noted that the smooth
structure of the wavepacket appeared to be breaking down and they theorized
that this might have been due to nonlinear effects. This was confirmed by the
measurements of Cohen, Breuer & Haritonidis (1991) who extended the work of
Gaster & Grant, measuring the vertical structure of the disturbance through the
boundary layer and following the evolution of the wavepacket through the nonlinear
regime to its breakdown to a turbulent spot. Their results revealed that, in the linear
stage, the vertical structure of each (β, ω) mode (where β is the spanwise wavenumber,
and ω is the frequency) is well approximated by the least-damped linear eigenmode – a
result in agreement with Gaster’s (1975) model. In addition, Cohen et al. (1991) found
that the first nonlinear interaction was characterized by the growth of a spectral peak
centred about a frequency one half that of the most-amplified Tollmien–Schlichting
band. The spanwise scale of the subharmonic band was found to have the same phase
velocity as the primary band, suggesting that a subharmonic resonance (cf. Craik
1971; Kachanov & Levchenko 1984) was responsible for the nonlinearity. In addition,
Cohen et al. also found that in this subharmonic stage, the linear mode shapes were
still appropriate in describing the vertical structure of each wave-vector, confirming
the applicability of the weakly nonlinear approach. Cohen (1994) extended Gaster’s
(1975) model and compared the amplitude evolution of the two and three-dimensional
modes measured by Cohen et al. with an extended linear theory. The results indicated
that the subharmonic oblique modes grew faster than predicted by linear theory, and
that the growth was initiated far upstream of the Branch II locations associated with
the most amplified two-dimensional fundamental waves. This added further weight
to the belief that a resonant nonlinear interaction is responsible for this stage of the
wavepacket’s evolution. Cohen also identified a second nonlinear behaviour in which
short-wavelength (high-frequency) modes started to grow at Branch II.

In the stage following the subharmonic resonance, Cohen et al. (1991) reported a
strongly nonlinear phase in which low-frequency modes were observed to grow, as
well as modes with increasing values of the spanwise wavenumber, β. In addition to
the development of an increasingly complex disturbance structure, this final stage is
also characterized by the appearance of small scales in the form of high-frequency
oscillations. These have been observed in many transition experiments (for example,
Klebanoff, Tidstrom & Sargent 1962) and are associated with the final breakdown of
organized structures and the onset of random turbulent motions. The current work
focuses on the late stages of the wavepacket’s development with particular interest
in both the spatial and spectral structure of the strongly nonlinear processes that
immediately precede and subsequently announce the onset of turbulence. In order
to elucidate this structure, wavelet analysis has been utilized on the instantaneous
perturbation velocities.

2. Experimental details
The experiments were conducted in the closed-loop low-turbulence wind tunnel

in the Department of Aeronautics and Astronautics at MIT (since moved to OSU).
The facility has a test section measuring 1.22 by 0.61 m and extending 6 m in the
downstream direction. For more complete details of the facility, the reader is referred
to Cohen et al. (1991). A laminar boundary layer was established on a flat plate
mounted in the test section with a free-stream velocity of Uo = 6.65 m s−1. We define
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a coordinate system with x, y and z as the streamwise, vertical (wall-normal) and
spanwise directions respectively. In the x-direction the velocity is denoted by a mean
component plus a perturbation, Uo(y) + u(x, y, z, t), while the vertical and spanwise
velocity components contain only perturbation quantities, denoted by v(x, y, z, t) and
w(x, y, z, t) respectively. Extensive measurements of the mean flow revealed that there
existed a very slight favourable pressure gradient, corresponding to a Falkner–Skan
wedge-angle parameter equal to 0.01. The effect of this is minor, slightly changing the
Tollmien–Schlichting growth rates from those obtained using a Blasius profile, but
not altering the overall physics of the transition process.

A circular perforated plate, 1 cm in diameter, was mounted flush with the wall at
x0 = 81 cm (measured from the leading edge). An audio speaker was connected to
the rear of the perforated plate with a short piece of flexible tubing. The speaker
was weakly excited by a single period of a 24 Hz sine wave, thus exciting a low-
amplitude perturbation with spectral energy concentrated at 24 Hz, and decaying as
ω−2 for frequencies above and below f = 24 Hz. The frequency was chosen to match
the Tollmien–Schlitching (T-S) waves whose Branch I was located at the streamwise
location of the speaker. This form of disturbance excited the wavepacket (i.e. the
unstable T-S modes), while keeping the transient portion of the initial disturbance (i.e.
the low-frequency lightly-damped T-S modes) to a minimum. We note that, although
the amplitude of the speaker excitation remained constant throughout the duration
of these measurements, it is not the same amplitude as was used in our previous
series of experiments (Cohen et al. 1991). Thus, the physical locations of the linear,
subharmonic and breakdown stages are not the same as those in our earlier series of
experiments.

All results presented here were obtained using a rake of eight hot-wire probes,
measuring the streamwise component of velocity, u, through the boundary layer. The
hot-wire voltages were sampled simultaneously, greatly reducing the time required
for data collection and, in the breakdown region, giving an instantaneous record of
the boundary layer profile. The spacing between wires was (starting with the wires
closest to the wall): 1.7, 1.7, 1.7, 2.1, 2.3, 4.1 and 4.7 mm. Typically, the first wire was
placed approximately 0.5 mm from the wall (the actual distance was computed from
the measured mean velocity profile). Since the spacing between each hot wire was
fixed, the downstream growth of the boundary layer implies that the non-dimensional
location of each wire (with respect to the wall) changed with x. However, since the
streamwise growth of the boundary layer is small, we were able to use the same probe
at all x-locations. As an example of the non-dimensional wire spacing, at x = 265 cm,
the eight wires were located approximately at y/δ∗ = 0.1, 0.5, 0.8, 1.1, 1.6, 2.0, 2.8 and
3.7. A cubic spline was used to interpolate the velocity signal to y-locations between
hot-wire positions. In addition, the measured velocity data were extrapolated to
y = 0 using the zero-slip condition at the wall, and into the far field by requiring
the velocity perturbation to behave as u ∝ exp(−αy) as y → ∞, where α is the decay
rate of the least-damped T-S mode at that x-location. This provides some limited
information about the flow field above the boundary layer, but given the rather crude
extrapolation, these extrapolations should be regarded only as suggestive. In order to
facilitate the interpretation of the results, some of the figures presented in this paper
include the actual locations of the hot wires, indicated by small squares plotted along
the right-hand side of the y-axis.

Measurements were performed at several x-locations downstream of the disturbance
generator: x = 170, 240, 250, 260, 265, 270, 275, 280, 282.5 and 285 cm (measured from
the leading edge). These correspond to Reynolds numbers (based on displacement
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thickness) of 1494, 1775, 1812, 1847, 1865, 1883, 1900, 1917, 1926 and 1934. At
each x-location, measurements were made at several spanwise locations to obtain the
three-dimensional structure of the wavepacket. Since Cohen et al. (1991) determined
that the wavepacket exhibits very good spanwise symmetry, the present experiments
measured only positive values of z and symmetry was assumed in reconstructing the
complete spanwise structure. For convenience in viewing the results, both positive
and negative values of z are presented in the figures.

The measurement sequence was initiated by a pulse from the computer which
triggered the disturbance generator. After waiting a preset delay time, T0 = (x −
x0)/0.935Uo, a record of 512 points was recorded such that the total non-dimensional
measuring time, τ = (t−T0)Uo/(x− x0), was equal to 3. This procedure is equivalent
to capturing an data acquisition ‘window’ whose leading edge travels downstream at
0.935Uo and whose trailing edge travels at 0.246Uo. The choice of these advection
speeds ensured that, for each value of x, the wavepacket occupied roughly the middle
third of the measurement window. At each measuring station, fifty individual events
were recorded. This was more than sufficient to form a statistically meaningful
ensemble average, although the procedure was aided by the use of linear de-trending.

In all the results presented, velocities have been non-dimensionalized by the free-
stream velocity, Uo; length-scales (and wavenumbers) are non-dimensionalized by
the local displacement thickness, δ∗. A non-dimensional frequency is also defined:
ω = 2πfδ∗/Uo where f is the dimensional frequency in Hz.

3. Results
3.1. Linear and weakly nonlinear stages

Figure 1 shows a summary of the wavepacket’s downstream development. The four
figures on the left show the streamwise component of velocity at y/δ∗ = 0.5 in the
(t, z)-plane. The series of figures on the right show the corresponding two-dimensional
wavenumber–frequency spectra (plotted with the non-dimensional frequency, ω, ver-
sus the spanwise wavenumber, β). The linear stage of the wavepacket is observed
at x = 170 cm, and is characterized by the smooth swept-back wave crests and the
low amplitude (approximately 0.6% of Uo peak-to-peak). The spectrum indicates
that most of the energy is concentrated in the two-dimensional modes, centred about
a fundamental frequency ω0 = 0.09 which corresponds to the most-amplified mode
according to linear stability theory.

There is also some energy in oblique modes (the local maxima in the spectra at
(β, ω) = (0.25, 0.085)) which is reflected in the velocity contours by weak peaks on
either side of the centreline. This apparent departure from the ‘canonical’ wavepacket
of Gaster (1975) might seem to indicate nonlinear behaviour in the disturbance.
However, the present results are in good agreement with the measurements of Cohen
et al. (1991) who also measured the structure of the wavepacket inside the boundary
layer and showed that the contribution to the streamwise velocity by the vertical
vorticity is particularly strong inside the boundary layer, and emphasizes any energy
present in oblique modes. Thus, although the oblique modes are less-amplified
than the two-dimensional modes, they nevertheless may be more energetic (in the
streamwise component) as a result of the relatively small amplification (or decay) of
spanwise modes that are an intrinsic part of the initial disturbance generation process.

As we progress downstream, we see the onset of the first nonlinear effects. At
x = 250 cm, oblique modes with frequency one-half that of the fundamental (i.e.
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Figure 1. Overall view of the three stages observed during the evolution of the wavepacket.
The left-hand column depicts contours of streamwise velocity perturbations, u, in the (t, z)-plane
at y/δ∗ = 0.5. The four streamwise locations represent the linear, subharmonic, early and late
breakdown stages. Solid lines show positive contour levels while dotted lines show negative
levels. The right-hand column shows the corresponding wavenumber–frequency spectra of the
ensemble-averaged velocity field.
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subharmonic modes) gain energy, a development which is characterized by the ap-
pearance of strong peaks in the velocity perturbations on either side of the centreline.
The peaks at the subharmonic (β ≈ 0.25) grow out of background ‘noise’ and are
not associated with the local oblique maxima observed at x = 170 cm. As with the
previous stage, these results are in good agreement with the previous measurements
of Cohen et al. (1991) and indicate that the vertical structure of each (β, ω) is still
well-described by the mode shape obtained from linear stability theory. In addition,
the wave speeds of the observed three-dimensional subharmonic and two-dimensional
fundamental approximately satisfy a subharmonic resonance criterion. The presence
of the linear mode shape and the matched wave speeds suggests that the subharmonic
modes grow as part of a weakly nonlinear subharmonic resonance similar to that de-
scribed by Craik (1971), or more generally, by Herbert (1988). However, the scenario
is quite complex as there exist a large number of wave triads that can participate in
such a resonant process since the wavepacket is described at this stage by bands of
energy at both the fundamental and the subharmonic frequencies and not isolated
modes as is the case for the theoretical analyses. We also observe in the spectra at
x = 250 cm the beginning of some low-frequency, low-spanwise-wavenumber distor-
tion of the mean flow, indicated by the small peak centred about β = 0, ω = 0. This
is a natural consequence of any nonlinear activity and is reflected in the velocity
measurements as broad distortion of the Blasius flow in the wavepacket.

3.2. Strongly nonlinear stage

By x = 270 cm, the subharmonic has now overtaken the fundamental as the primary
location of disturbance energy and, as figure 1 indicates, the (0, 0) peak has become
much more pronounced. We also see the growth of energy at (2βs, 0) (where βs
indicates the spanwise scale of the subharmonic peak). This is manifested in the
velocity field by the appearance of strong spanwise variations, and the increasingly
streaky (low-frequency, high-β) structure of the velocity perturbations. By now, the
wave crests that defined the original wavepacket, although still present, are no longer
visible since their amplitude is too low to appear at these contour levels.

This progression of energy to low-frequency modes continues, and at x = 280 cm,
we see significant low-ω low-β distortion and another peak emerging at (3βs, ωs).
Despite the fact that this disturbance originated from a wavepacket, the velocity field
at these last two stations (x = 270, 280 cm) looks remarkably like the high-amplitude
localized disturbances computed by Breuer & Landahl (1990) who studied the initial
development of a localized disturbance in a boundary layer. Similarities are also
evident between the velocity field and the numerical solutions of localized disturbances
in plane Poiseuille flow computed by Henningson, Lundbladh & Johansson (1993).
The propagation of energy along the β-axis is also a common feature and has been
observed in the numerical simulations of localized disturbances (Breuer & Landahl
1990; Henningson et al. 1993).

We note that some of the higher harmonics are visible when plotted with a more
sensitive contour level. Those additional peaks observed are at (0, ωs), (0, 3ωs),
≈ (3βs, 2ωs) and ≈ (3βs, 3ωs). In addition, it is important to remember that these
spectra are transforms of the ensemble-averaged velocity field. Thus, the generation
of spectral peaks which have varying or random phase will not be observed in these
figures. We shall investigate one example of this immediately.

The data may be examined in a slightly different manner by plotting spectra in the
(ω, y)-plane (for fixed values of x and z). This is shown in figure 2 for z/δ∗ = 4.7. This
value of z is chosen since it represents the spanwise location which best illustrates the
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phenomena characteristic of this nonlinear stage. The data are plotted in two ways.
If we denote as ui(t) the ith record in the ensemble, where i varies from 1 to N and N
is the number of events in the ensemble, then we can compute two kinds of spectra.
If we denote as P [f(t)] the power spectrum of the function f(t) then the left-hand
column of figure 2 shows the spectra of the ensemble-averaged velocity field,

P [u(t)] = P

[
1

N

N∑
i=1

ui(t)

]
, (3.1)

while the right-hand column shows the ensemble average of the individual spectra,

P [u(t)] =
1

N

N∑
i=1

P [ui(t)] . (3.2)

For completely coherent signals these two will be identical and we see that for x = 170
and 250 cm, this is the case. At x = 170 we see that most of the energy is located
at ω = 0.09, the least-damped Orr–Sommerfeld mode at that Reynolds number.
The vertical distribution also reflects the linear theory that governs this stage. The
maximum occurs inside the boundary layer at approximately y/δ∗ = 0.5 while a
second, broad maximum is observed extending into the free stream. A small peak
around the zero-frequency band is also observed. This is most likely the remnant of
the transient portion of the disturbance which decays quite slowly, although it might
also be associated with mode–mode nonlinear interactions which, although weak at
this early stage of the transition process, are nevertheless present. At x = 250 cm
we see a similar pattern, with the exception that the energy is now also represented
at the subharmonic frequency ω = 0.045. The amplitude of the disturbance has
also grown and the ‘finger’ into the free stream is stronger than before. The square
symbols along the right-hand y-axis of figure 2 indicate the location of each hot wire
in the boundary layer. As mentioned before, the structure above the measurement
stations is obtained by extrapolating into the free stream and by requiring that the
amplitude decay exponentially as y → ∞. Clearly this structure is only suggestive
and should be interpreted as such, but nevertheless does accurately reflect the trend
of the perturbation velocity at the outer edge of the shear layer. The observed fingers
stretching into the free stream thus reflect the fact that, in the narrow frequency
band around ω = 0.1, the perturbation amplitude is still increasing at the top of
the boundary layer, while at other frequencies, it is already decaying as y increases.
This behaviour is consistent with linear stability theory which indicates a secondary
maximum above the boundary layer centred about the frequency of the least-damped
T-S mode.

At the two later x-locations, differences begin to appear between the two types of
spectra. In particular, at the higher frequencies we see that the ensemble-averaged
spectra indicate much more energy located at higher values of ω than the spectra of
the ensemble-averaged velocity reflect. This indicates that the scales corresponding to
these frequencies are less-well correlated with the large-scale (low-frequency) portion
of the disturbance and therefore tend to be smeared out by the ensemble-averaging
process. However, we see that by computing the spectrum before ensemble averaging,
we can capture the true spectral content of this motion which is an order of magnitude
larger than the left-hand-side figures would indicate. This is especially true at
x = 280 cm, where we see a significant amount of structure at the higher frequencies,
but which has either significant phase jitter, or completely random phase. We should
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Figure 3. Ensemble-averaged instantaneous velocity profiles at different times, measured at
x = 270 cm. y/δ∗ = 4.9 (a) and 9.4 (b). The solid lines show the phase-averaged velocity
profiles (the symbols are the actual hot-wire locations) while the dotted lines show the undisturbed
Blasius profile. The profiles span τ = 1.4− 2.0 in increments of 0.05.

note that phase jitter results from small differences in the structure and arrival time
of individual events (due to variations in the mean flow, disturbance generator, etc).
Large-scale structures (i.e. low frequencies) are not adversely affected by this jitter.
However, the effect of small variations in t becomes important at higher frequencies
and the ensemble average tends to smear out the small-scale structure. Thus, the
observed differences between P [u] and P [u] at x = 270 and x = 280 cm does
not necessarily mean that the high-frequency motion has random phase. It may
be perfectly correlated with the large-scale motion, but be smeared out by small
variations in the arrival time of each event.

3.3. Distortion of local mean profile

As figure 1 indicates, by x = 270 cm, the disturbance has grown to a substantial
amplitude, and the wavenumber–frequency spectrum indicates that distortion (at
ω ≈ 0, β ≈ 0) has become quite significant. At this stage, the disturbance amplitude is
sufficiently large that the instantaneous velocity profiles are significantly distorted from
Blasius. This is illustrated in figure 3, which shows ensemble-averaged instantaneous
velocity profiles plotted for τ = 1.4 to τ = 2.0 in increments of 0.05. Here, we plot the
velocity profiles at two spanwise locations: z/δ∗ = 4.7 and 9.4. These represent the
central portion of the disturbance, where a high-speed region of fluid is followed by
a low-speed region, and the off-centre portion of the disturbance, where the converse
occurs. Both show strong distortion. In the regions of locally accelerated fluid
(z/δ∗ = 4.7 at τ ≈ 1.6 and z/δ∗ = 9.4 at τ ≈ 1.7) the profiles are fuller while in the
regions of locally decelerated flow (z/δ∗ = 4.7 at τ ≈ 1.7 and z/δ∗ = 9.4 at τ ≈ 1.55),
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Figure 4. Plots of u/Uo vs. τ for nine individual realizations (events) at x = 270 cm, z/δ∗ = 4.7
and y/δ∗ = 0.75.

the profiles have become inflectional. This immediately alerts us to the possibility of
localized breakdown due to Rayleigh instabilities associated with these inflectional
instantaneous profiles. However, one must remember that an inflection point in the
vertical direction does not guarantee breakdown, and that in this complex disturbance
field it is likely that there exists a significant spanwise velocity field and both spanwise
and streamwise gradients in all three velocity components.

3.4. Small-scale structure and higher harmonics

The presence of energy at high frequencies, shown in figure 2, suggests that the
ensemble-averaged signals have lost some significant information at the latter stages
of the disturbance growth. As mentioned above, while small variations in the structure
and arrival time of each event will not adversely affect the ensemble-averaged structure
at the large scales, they will smear out small-scale structure. Thus, in order to explore
this small-scale structure, we must look at individual events.

Velocity traces from one of the hot wires, at x = 270 cm, y/δ∗ = 0.75 and z/δ∗ = 4.7
are shown in figure 4. Here, nine individual events are represented. At first glance we
see that the coherence of the events is, in general, quite good and that, despite the
high levels of perturbation from the undisturbed mean (approximately 25% of Uo,
peak-to-peak), both the shape and amplitude of the disturbances are consistent from
one event to the next. At this location we are looking at the passage of a region of
increased normal shear, indicated by the initial region of accelerated fluid, followed
by a region of decelerated fluid. What is interesting here, however, is the ‘kink’ in the
velocity signal at the centre of the transition from high- to low-speed fluid. Although
there are some variations in intensity, this kink is detectable in every event. Unlike the
large-scale structure, this feature of the flow is not perfectly repeatable and because
both its strength and position (in both time and space) vary slightly between events,
it is smeared out by the ensemble-averaging procedure. By measuring the period of
the kink, we can estimate its frequency to be approximately ω = 0.26 which is in
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reasonable agreement with the observed peak at ω = 0.3 indicated by the spectra at
the same spanwise location (figure 2).

Since the data were taken using a boundary layer rake, we can also plot the
instantaneous contours of u at x = 270 cm, z/δ∗ = 4.7. This is shown in figure 5,
using the same events as in figure 4. For some of the events, the kink that was
observed in the velocity signal is not evident (a reminder that contour plots can
obscure important detail). However, events 1, 3 and 5 in particular clearly show
the development of small-scale structure in the lower portion of the disturbance,
below y/δ∗ = 1.0. These events correspond to the frames in figure 4 which showed a
well-developed kink in u, and are also the events with stronger large-scale structure.
Re-plotting figure 5 with a finer contour spacing reveals that, for all events, these
‘islands’ between the two large-scale structures exist, although they have much lower
amplitude in the weaker events: 2, 4, etc. A comparison between the rendering of
event 3 in figures 4 and 5 also illustrates that the absolute location of the kink with
respect to the wall is somewhat variable (compare, for example, events 1 and 3).

3.4.1. Wavelet analysis

In attempting to isolate the small-scale structure for further analysis, one is tempted
to remove the large-scale structure by using a high-pass filter. This was tried but
the results were somewhat inconclusive since there does not exist a clear separation
between the large and small scales in frequency space. In fact, the rapid change
of u with time shown in figure 4 implies that there are high frequencies associated
with the large-scale shear, ∂u/∂τ, which will not, in general, be separable from the
high-frequencies associated with the small-scale kinks in u. This difficulty has been
noted before by Kachanov (1987) who demonstrated that the frequency, amplitude
and phase of filtered signals are extremely sensitive to the details of the filter and the
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choice of the cutoff frequency. However, the use of a wavelet transform can reveal
some of this structure without the uncertainties of simple time-series filtering. This
was applied with some promise to transitional boundary layer flows by Shaikh &
Gaster (1994) and has the advantage over simple filtering of retaining the temporal
structure of the velocity signal at each filtered scale.

For the current analysis, we have utilized the continuous wavelet transform (for a
comprehensive discussion of wavelet applications in fluid mechanics, see Farge 1992)
in which the wavelet coefficients ũ(τ; l) for each dilation scale, l, are defined by the
convolution integral:

ũ(τ; l) =

∫
u(τ′)ψ

(
τ′ − τ
l

)
dτ′ (3.3)

where ψ(x) is the wavelet function, in this case chosen to be the complex Morlet
wavelet:

ψ(t) = eikψte(−|t|2/2), (3.4)

and kψ is chosen to have a value of 6 in accordance with the recommendation by
Farge (1992). In the applications presented here, the dilation parameter l was varied
from 0.02 to 1.0, a range that was established empirically and found to cover the
complete range of interesting features observed in the experimental velocity signals.

Figure 6 shows the distribution of the wavelet coefficients, ũ, resulting from a
continuous wavelet expansion of event 1 from figure 4. In keeping with the customary
presentation of wavelet transform data, the coefficients corresponding to large values
of l (representing large scales) are plotted at the bottom of the figure while small
values of l, representing small scales, are plotted at the top of the figure. Since the
primary purpose is to reveal the presence of small-scale structure, we have adopted
the common procedure (Farge 1992) of normalizing the wavelet coefficients by their
maximum at each scale, l. This allows a clear visualization of structure at different
scales although information regarding relative amplitudes has been discarded. The
transform, however, clearly illuminates the appearance of the kink, represented by the
peak in the contour plot at (τ, l) = (1.6, 0.3). The difficulty with time-series filtering
is also highlighted by the sharp peak at τ = 1.6 that continues into the small scales
(i.e low values of l, at the top of the figure). This is clearly associated with the steep
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deceleration in the velocity signal (figure 4) and would be retained in a conventional
high-pass time-domain filtering process.

It is unclear whether or not the velocity kinks revealed in the individual events
by figures 4, 5 and 6 represents an instability wave growing on the locally distorted
velocity field and would be visible in a contour plot by waviness or kinks in the
velocity contours. In addition, at this stage of the transition process in which we
see significant distortion of the instantaneous velocity profiles, one would expect that
inflectional and secondary instabilities would not be difficult to excite. However, one
must proceed with caution. On comparing the distorted mean profiles (figure 3) with
the individual contour plots (figure 5), one sees that the location of the velocity kinks
falls between a region with a stabilized profile on the upstream end and a destabilized
profile on the downstream end of the disturbance. In addition, the phase of the
kink (with respect to the large-scale features of the disturbance) is quite repeatable.
Since an instability would typically be associated with a destabilized (inflectional)
profile and would not exhibit such repeatable phase, it would therefore seem that this
small-scale feature is not due to an instability phenomenon. Rather it appears to be
the first sign of higher harmonics due to nonlinear effects or, perhaps, a resonant
interaction (Kachanov 1994).

Although the wavenumber–frequency spectra (figure 1) indicate that the dominant
transfer of energy is towards low-frequency high-spanwise-wavenumber scales, the
previous results (figure 4) illustrate the first appearance of a higher-harmonic feature.
As the wavepacket continues to evolve, more complex high-frequency features are
also observed, although they can only be seen in individual events. Since the data
were acquired with a boundary layer rake, frequency spectra as a function of ω and
y are available from each individual event. Four such events are shown in figure 7
chosen from four x-stations in the subharmonic and breakdown regimes.

These spectra illustrate the progression of the spectrum without any averaging to
smear out fine details. At x = 265 cm, the basic linear and subharmonic structures are
observed (as discussed earlier). This is intensified at x = 275 cm and we also see the
appearance of the coherent small-scale structure at ω = 0.35 and manifested as the
kink in the velocity time-series. At x = 280 and 282.5 cm, we see the cascade of energy
to high frequencies. Note that the contour levels here are logarithmic (one contour
for each half-decade) so that the higher frequencies have significantly lower energy.
Nevertheless, the structure of nonlinear interactions generating a series of higher
harmonics is evident. Recent work by Healey (1995) has revealed a mechanism for
the resonant growth of higher harmonics in a boundary layer. Although we have not
attempted to verify this mechanism quantitatively, it warrants careful consideration
as a possible explanation for the growth of selected higher frequencies observed in
the present data.

3.5. Onset of breakdown

Once energy is available at high frequencies, it is likely to be rapidly amplified
since the instantaneous velocity profiles, now highly distorted, are inflectional and
thus inviscidly unstable. This scenario is supported by the observation that, after
x = 282.5 cm, the individual traces become less repeatable and the wavepackets begin
to break down to turbulent spots. Examination of individual realizations indicates
that while some of the disturbances are still ‘laminar’, some were observed to contain
high-frequency content with random phase, indicating their breakdown to a chaotic
state. Other events were clearly undergoing breakdown and showed the presence of a
breakdown instability, still in infancy. An example of this stage is presented in figure 8
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Figure 7. Representative frequency spectra, plotted vs. y at different x-locations illustrating the
generation of harmonics during the breakdown stage. z/δ∗ = 4.7. Logarithmic contour levels
plotted in half-decades.
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Figure 8. Streamwise velocity signal (a) and its corresponding wavelet transform (b). x = 285 cm,
y/δ∗ ∼ 1, z/δ∗ = 9.4.

which shows a single streamwise velocity signal at x = 285 cm, y/δ∗ ≈ 1. Figure 8(a)
shows the full velocity perturbation while figure 8(b) shows the corresponding wavelet
transform, as defined in §3.4.1.

As before, each ‘peak’ in the wavelet amplitude contour plot can be identified
with a feature of the original velocity signal. In particular, a discrete peak at
l = 0.06, τ ≈ 1.55 is present in some of the individual realizations and appears to be
associated with small-amplitude high-frequency oscillations leading to the breakdown
to turbulence. Although the phase and amplitude of each individual event differ,
this example is representative of the entire data set. An estimate of the vertical
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Figure 9. Contours of streamwise perturbation velocity: (a) full signal with no filtering; (b) the
wavelet-transformed signal at a single dilation scale of l = 0.06. For this case, no wavelet coefficient
normalization was performed. x = 285 cm, z/δ∗ = 9.4. Contour levels: 0.05Uo (a) and 0.01Uo (b).

structure of the same event is shown in figure 9 in which case we have taken the
wavelet transform of each hot-wire signal with a single dilation parameter of l = 0.06
and re-constructed the t–y ‘filtered’ velocity signature. Unlike the previous examples
of the wavelet transform, the wavelet coefficients are not normalized and thus the
amplitudes of the small-scale structure can be compared with those of the full signal.
As before, the full structure is plotted in part (a) while the filtered disturbance is
plotted in part (b) (Note the change in scale on the filtered figure.) In both cases,
the temporal resolution of the digitized data is somewhat marginal and so there may
be additional high-frequency features which have not been captured accurately. In
addition, the difficulties associated with time-series filtering (Kachanov 1987) should
be kept in mind when interpreting these data. Specifically, we must emphasize that,
even though the wavelet does indicate a small peak at l = 0.06, there is not a clear
scale separation as was observed in figure 6. Nevertheless, the basic structure of
the breakdown is clear and we note that, although the frequency of the observed
‘breakdown oscillations’ does vary somewhat with l, the structure and amplitudes
indicated by figure 9 are quite robust to moderate changes in the selected dilation
parameter, l. It is interesting to note that the maximum amplitude of the secondary
wavepacket is located in the narrow low-speed region of the primary perturbation
(just ahead of τ = 1.6) and that the high-frequency structure is inclined to the left at
the same angle as the large-scale inclination. This low-speed region is analogous to
the classic ‘spike stage’ observed by Klebanoff et al. (1962).

4. Discussion and conclusions
The results presented here illustrate some of the details of the nonlinear phase of

transition, and the ultimate breakdown to turbulence. Three distinct phases can be
identified: a subharmonic stage, strong nonlinear stage resulting in the progression
of energy with zero or low frequency to increasingly small spanwise scales and, to a
lesser extent, in the generation of higher harmonics. Lastly we observe the appearance
of high frequencies with random phase riding on intense shear layers in the disturbed
flow.

The subharmonic stage is in good agreement with previous experiments (Gaster &
Grant 1975; Cohen et al. 1991; Cohen 1994) and at this point seems well-understood.
The next stage – the generation of low-frequency high-spanwise-wavenumber modes
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– may also be understood as a direct consequence of nonlinear mode interactions.
The preference for low-frequency modes has been observed in numerical experiments
(Pruett & Zang 1992; Kim & Moser 1989) and has been discussed in some detail
by Henningson et al. (1993) who attribute this ‘β-cascade’ to a two-stage process.
In the first stage, ‘seed’ energy is first generated by nonlinear mode interactions
while the second stage serves to amplify this seed energy via a transient growth
mechanism (cf. Landahl 1980; Gustavsson 1991; Henningson, Gustavsson & Breuer
1994) in which a small amount of energy concentrated primarily in the v-component
is rapidly amplified by a linear interaction with the mean profile which generates
vertical vorticity due to vortex tilting and stretching by the strong mean shear. The
mechanism has a strong preference for low-frequency modes since these exhibit the
most dramatic transient amplification (see, for example Breuer & Kuraishi 1994). In
the present configuration, the subharmonic oblique energy peak, (±βs, ωs), interacts
nonlinearly with the fundamental, (0, 2ωs), to generate seed energy at (±2βs, 0) which
then grows through a transient growth mechanism. This process continues resulting
in the progression of energy along the β-axis. Although higher harmonics are also
created by nonlinear mode interactions, they are less energetic since they are not
amplified by the transient growth to the same degree as the low-frequency modes.
Although there is no conclusive proof that this transient-assisted nonlinear mechanism
is the root cause for the observed development, these theoretical considerations do
provide considerable support for the current results, and although this has been
observed numerically as described above, we believe it to be the first experimental
confirmation of this aspect of the transition process.

High-frequency modes are also generated by mode interactions and are observed in
the present results, albeit at lower amplitudes. However, the generation of the higher
harmonics is reflected in the velocity signals by very intense streamwise gradients.
The generation of these narrow regions of low-speed fluid is in accordance with the
‘spike’ stage of Klebanoff et al. and with the results of Henningson et al. (1993)
who observed a rapid growth in v which lifts up low-speed fluid from the wall. It
is at these locations that we observe the growth of high-frequency instabilities with
random phase which lead directly to turbulence. The wavelet analysis techniques
used here have proved to be quite effective in delineating the spatial and spectral
structure of these complex signals. Related measurements by Gaster (1991) show a
similar route to turbulence in which high-frequency oscillations are observed on a
finite-amplitude shear layer induced by the primary disturbance (in Gaster’s case, a
point-harmonic source). Gaster reported that the secondary waves have frequency of
about 5 to 6 times that of the primary frequency. This value is slightly lower than the
ratio of about 7 found in the present results but can be considered comparable given
the difficulties discussed regarding high-pass filtered time series. The complexity of
the disturbance at this late stage of transition makes the complete analysis extremely
difficult. Ideally one would have data on more than one velocity component and
simultaneous measurement in z as well as in y. However, despite these shortcomings,
the results presented here are consistent with related numerical experiments and with
physical intuition.

While these two breakdown mechanisms (the β-cascade and the appearance of
high frequencies at the spike regions) may be universal to all three-dimensional flows,
what will differ between the two disturbances is the spatial and temporal scales on
which they evolve. For example, in the present results, the primary three-dimensional
scale is determined from the conditions that meet the criteria for the subharmonic
resonance. In contrast, the three-dimensionality that evolves from an initially two-
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dimensional disturbance (such as a ribbon-induced two-dimensional T-S wave) might
have a different scale. (The spanwise wavenumber forced by Klebanoff et al. had a
spanwise wavenumber of approximately 0.42 compared with 0.3 in the present case.)
Given this, one might expect that, even if the underlying nonlinear mechanisms are
identical, their relative strengths and characteristic scales will be different. Similarly,
an initially three-dimensional localized disturbance will have length scales which are
imposed by the nature of the initial perturbation. Again, one might expect the physics
of the breakdown process to be similar to the results presented here although the
details may differ.
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